Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Am J Transplant ; 20(12): 3326-3340, 2020 12.
Article in English | MEDLINE | ID: covidwho-1455499

ABSTRACT

The eIF5A hypusination inhibitor GC7 (N1-guanyl-1,7-diaminoheptane) was shown to protect from ischemic injuries. We hypothesized that GC7 could be useful for preconditioning kidneys from donors before transplantation. Using a preclinical porcine brain death (BD) donation model, we carried out in vivo evaluation of GC7 pretreatment (3 mg/kg iv, 5 minutes after BD) at the beginning of the 4h-donor management, after which kidneys were collected and cold-stored (18h in University of Wisconsin solution) and 1 was allotransplanted. Groups were defined as following (n = 6 per group): healthy (CTL), untreated BD (Vehicle), and GC7-treated BD (Vehicle + GC7). At the end of 4h-management, GC7 treatment decreased BD-induced markers, as radical oxygen species markers. In addition, GC7 increased expression of mitochondrial protective peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC1α) and antioxidant proteins (superoxyde-dismutase-2, heme oxygenase-1, nuclear factor [erythroid-derived 2]-like 2 [NRF2], and sirtuins). At the end of cold storage, GC7 treatment induced an increase of NRF2 and PGC1α mRNA and a better mitochondrial integrity/homeostasis with a decrease of dynamin- related protein-1 activation and increase of mitofusin-2. Moreover, GC7 treatment significantly improved kidney outcome during 90 days follow-up after transplantation (fewer creatininemia and fibrosis). Overall, GC7 treatment was shown to be protective for kidneys against BD-induced injuries during donor management and subsequently appeared to preserve antioxidant defenses and mitochondria homeostasis; these protective effects being accompanied by a better transplantation outcome.


Subject(s)
Kidney Transplantation , Reperfusion Injury , Adenosine , Allopurinol , Animals , Brain Death , Glutathione , Insulin , Kidney/metabolism , Kidney Transplantation/adverse effects , Organ Preservation Solutions , Peptide Initiation Factors/metabolism , RNA-Binding Proteins , Raffinose , Reperfusion Injury/etiology , Reperfusion Injury/prevention & control , Swine
2.
EMBO J ; 40(11): e102277, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1194823

ABSTRACT

The ongoing outbreak of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) demonstrates the continuous threat of emerging coronaviruses (CoVs) to public health. SARS-CoV-2 and SARS-CoV share an otherwise non-conserved part of non-structural protein 3 (Nsp3), therefore named as "SARS-unique domain" (SUD). We previously found a yeast-2-hybrid screen interaction of the SARS-CoV SUD with human poly(A)-binding protein (PABP)-interacting protein 1 (Paip1), a stimulator of protein translation. Here, we validate SARS-CoV SUD:Paip1 interaction by size-exclusion chromatography, split-yellow fluorescent protein, and co-immunoprecipitation assays, and confirm such interaction also between the corresponding domain of SARS-CoV-2 and Paip1. The three-dimensional structure of the N-terminal domain of SARS-CoV SUD ("macrodomain II", Mac2) in complex with the middle domain of Paip1, determined by X-ray crystallography and small-angle X-ray scattering, provides insights into the structural determinants of the complex formation. In cellulo, SUD enhances synthesis of viral but not host proteins via binding to Paip1 in pBAC-SARS-CoV replicon-transfected cells. We propose a possible mechanism for stimulation of viral translation by the SUD of SARS-CoV and SARS-CoV-2.


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , Gene Expression Regulation, Viral , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Bacterial Proteins , Chromatography, Gel , Coronavirus Papain-Like Proteases/chemistry , Crystallography, X-Ray , Genes, Reporter , HEK293 Cells , Humans , Immunoprecipitation , Luminescent Proteins , Models, Molecular , Peptide Initiation Factors/chemistry , Protein Binding , Protein Biosynthesis , Protein Conformation , Protein Domains , Protein Interaction Mapping , RNA, Viral/genetics , RNA-Binding Proteins/chemistry , RNA-Dependent RNA Polymerase/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Ribosome Subunits/metabolism , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , Scattering, Small Angle , Sequence Alignment , Sequence Homology, Amino Acid , Viral Nonstructural Proteins/chemistry , X-Ray Diffraction
3.
Elife ; 92020 12 15.
Article in English | MEDLINE | ID: covidwho-977809

ABSTRACT

Vaccines are powerful tools to develop immune memory to infectious diseases and prevent excess mortality. In older adults, however vaccines are generally less efficacious and the molecular mechanisms that underpin this remain largely unknown. Autophagy, a process known to prevent aging, is critical for the maintenance of immune memory in mice. Here, we show that autophagy is specifically induced in vaccine-induced antigen-specific CD8+ T cells in healthy human volunteers. In addition, reduced IFNγ secretion by RSV-induced T cells in older vaccinees correlates with low autophagy levels. We demonstrate that levels of the endogenous autophagy-inducing metabolite spermidine fall in human T cells with age. Spermidine supplementation in T cells from old donors recovers their autophagy level and function, similar to young donors' cells, in which spermidine biosynthesis has been inhibited. Finally, our data show that endogenous spermidine maintains autophagy via the translation factor eIF5A and transcription factor TFEB. In summary, we have provided evidence for the importance of autophagy in vaccine immunogenicity in older humans and uncovered two novel drug targets that may increase vaccination efficiency in the aging context.


Subject(s)
Aging/immunology , Autophagy/immunology , CD8-Positive T-Lymphocytes/immunology , Respiratory Syncytial Virus Vaccines/immunology , Spermidine/pharmacology , Adjuvants, Immunologic/pharmacology , Adult , Aged , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Line, Tumor , Humans , Immunologic Memory/immunology , Interferon-gamma/blood , Jurkat Cells , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/metabolism , Respiratory Syncytial Viruses/immunology , Spermidine/blood , Vaccination , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL